
Operating a Natural RPC Environment
This section mainly describes the tasks required to operate a Natural RPC environment. Some of these tasks are
performed with the SYSRPC utility. For instructions on the functions the SYSRPC utility provides, refer to the
Natural SYSRPC Utility documentation.

This section covers the following topics:

Specifying RPC Server Addresses
Stubs and Automatic RPC Execution
Modifying RPC Profile Parameters Dynamically
Executing Server Commands
Logon to a Server Library
Using the LOGON Option
Using Natural RPC with Natural Security
Using Natural RPC with EntireX Security
Using Compression
Using Secure Socket Layer
Monitoring the Status of an RPC Session
Handling Errors

Specifying RPC Server Addresses
To each remote CALLNAT request, a server must be assigned (identified by servername and nodename) on which
the CALLNAT is to be executed. Therefore, all subprograms to be accessed remotely must be defined:

in a local service directory on the client side,
or in a remote directory accessed via a remote directory server,
or by way of default server addressing with the RPC profile parameter DFS,
or within the client application itself by way of default server addressing.

In addition to the methods mentioned above, you can specify alternative servers.

With Natural RPC Version 5.1, it is also possible to define servers using the EntireX location transparency.

Below is information on:

Using Local Directory Entries
Using Remote Directory Entries
Specifying a Default Server Address at Natural Startup
Specifying a Default Server Address within a Natural Session
Using an Alternative Server
Using EntireX Location Transparency

Using Local Directory Entries

All data of a client’s local service directory is stored in the subprogram NATCLTGS. At execution time, this
subprogram is used to retrieve the target server. As a consequence, NATCLTGS must be available in the client
application or in one of the Natural steplibs defined for the application.

If NATCLTGS has not been generated into a steplib or resides on another machine, use the appropriate Natural
utility (SYSMAIN, SYSTRANS or SYSOBJH) to move NATCLTGS into one of the steplib defined for the
application.

1Copyright Software AG 2002

Operating a Natural RPC EnvironmentOperating a Natural RPC Environment

If you are using a NATCLTGS for joint usage, you must make it available to all client environments, for example by
copying it to the library SYSTEM, or, if an individual copy is used for a client, it must be maintained for this client
using the Service Directory maintenance function of the SYSRPC utility.

To define and edit RPC service entries, see the Service Directory function under Natural RPC 5.1 or under the
current version of Natural RPC, as described in the SYSRPC Utility documentation.

Using Remote Directory Entries

A remote directory contains service entries that can be made available to several Natural clients. The Natural clients
can retrieve these service entries from remote directory servers. For information on the purpose and on the
installation of remote directory servers, see Using a Remote Directory Server.

Specifying a Default Server Address at Natural Startup

Instead of addressing a server by using a local or remote service directory, you can preset a default server with the
RPC profile parameter DFS, as described in your Natural Operations documentation. This server address is used if
the subprogram can be found in neither the local nor the remote service directory.

The DFS setting determines the default server for the whole session or until it is overwritten dynamically.

If no DFS setting exists and the server address of a given remote procedure call could not be found in the service
directory, a Natural error message is returned.

A default server address defined within a client application remains active even if you log on to another library or if
a Natural error occurs.

Specifying a Default Server Address within a Natural Session

The client application itself may dynamically specify a default server address at runtime. For this purpose, Natural
provides the interface USR2007N in the library SYSEXT. The interface enables you to determine a default server
address that is to be used each time a remote program cannot be addressed via the service directory. It includes the
following parameters:

Copyright Software AG 20022

Operating a Natural RPC EnvironmentUsing Remote Directory Entries

Parameter Format Explanation

function A1 P Put: Determines that the server address (composed of the parameters nodename
and servername, see below) is the default address for all subsequent remote
procedure calls not defined in the service directory.

To remove a default server address, specify a "blank" for nodename and
servername.

G Get: Retrieves the current default server address as set by the function P.

nodename A8 Specifies/returns the name of the server node to be addressed.
With Natural RPC Version 5.1, the node name may have up to 32 characters for physical
node names and up to 192 characters for logical node names. See Using EntireX Location
Transparency.

servernameA8 Specifies/returns the server name to be addressed.
With Natural RPC Version 5.1, the server name may have up to 32 characters for physical
server names and up to 192 characters for logical service names. See Using EntireX
Location Transparency.

logon A1 Specifies/returns the logon option.

protocol A1 Specifies/returns the transport method.
Valid value: B (=EntireX Broker).

The Natural subprogram NATCLTPS in the library SYSRPC is only maintained for compatibility reasons. Except
for logon and protocol, it provides the same parameters as the interface USR2007N.

Using an Alternative Server

To avoid connection failures, you may want to define several alternative servers for a remote CALLNAT. If you
specify such alternative servers, Natural proceeds as follows:

The client makes a first attempt to establish the connection.
If this attempt fails, instead of providing an error message, a second attempt is made, however, this time not on
the same server. Instead, the service directory is searched again starting at the current entry to find out whether
or not another server is available which offers the desired service.
If a second entry is found, Natural tries to establish the connection to this server. If the remote procedure call is
performed successfully, the client application keeps on running. The user does not notice whether the
connection to the first server or to the alternative server produced the result.
If no further entry is found or if the connection to alternative servers fail, Natural issues a corresponding error
message.

 To enable the use of an alternative server

1. Define more than one server in the service directory for the same service.
2. Set the Natural RPC profile parameter TRYALT to ON to give permission to use an alternative server.

This parameter can also be set dynamically for the current session. See the Parameter Maintenance function as
described in the SYSRPC Utility documentation.

Using EntireX Location Transparency

Using EntireX location transparency, you can change physical node and server names without having to configure
anything or to change client and/or server programs. Now, instead of using a physical node and physical server
name, a server can be addressed by a logical name. The logical name is mapped to the physical node and server
names using directory services.

3Copyright Software AG 2002

Using an Alternative ServerOperating a Natural RPC Environment

To take advantage of location transparency, the Natural RPC (as of Version 5.1) has been enabled to accept a logical
name wherever only a node and server name could be specified before. The logical name is passed to the EntireX
Broker before it is used the first time.

The maximum length of a logical name is 192 characters. To avoid new Natural profile parameters, a logical name is
specified in the server name part of the already existing parameters. There are two kinds of logical names:

Logical node names
With a logical node name you specify a logical name for the node only in conjunction with a real server name.
A logical node name can be used in all places where you can also use a real node name. To define a logical
node name the keyword LOGBROK must be used.
Example:
SRVNVODE=ŸLOGBROK=logical_node_name,my_setŸ
Logical services
With a logical service, you specify a logical name for both the node and the server. A logical service can be
used in all places where you can also use a real node and server name. To define a logical service, the node
name must be set to * (intentionally left empty), and the server name contains the logical service name.
Example:
SRVNVODE=Ÿ*Ÿ SRVNAME=Ÿlogical_service_name,my_setŸ
Note:
In the case of interface USR2071N, you can LOGON to a logical service name by using the keyword
LOGSERVICE together with the logical service name in the field broker-id.

For more details about the EntireX location transparency, refer to the EntireX documentation.

The following components refer to node and server names:

Natural profile parameters SRVNODE, SRVNAME, DFS and RDS
Service maintenance of the SYSRPC utility
Service directory (NATCLTGS)
User application interfaces USR2007N, USR2071N
Service programs RPCERR, RPCINFO

See also Location Transparency in Service Directory Maintenance in the Natural SYSRPC utility documentation.

Stubs and Automatic RPC Execution
Stubs are no longer required if automatic Natural RPC execution is used, as described in Working with Automatic
Natural RPC Execution below.

However, generating stubs provides the advantage of controlling the CALLNAT(s) executed remotely and facilitates
error diagnoses. Should a remote call fail due to an incorrect CALLNAT name, the Natural error message issued
then helps to immediately identify the problem cause. Without a stub, for an incorrect CALLNAT you may receive
follow-up errors returned from the transport layer or the Natural server.

Below is information on:

Creating Stub Subprograms
Working with Automatic Natural RPC Execution

Creating Stub Subprograms

With the Stub Generation function of the SYSRPC utility, you can generate the Natural stub subprograms used to
connect the client’s calling program to a subprogram on a server. The stub consists of a parameter data area (PDA)
and of the server call logic.

Copyright Software AG 20024

Operating a Natural RPC EnvironmentStubs and Automatic RPC Execution

The PDA contains the same parameters as used in the CALLNAT statement of the calling program and must be
defined in the Stub Generation screen of the Stub Generation function. If a compiled Natural subprogram with the
same name already exists, the PDA used by this subprogram is used to preset the screen. The server call logic is
generated automatically by the Stub Generation function after the PDA has been defined.

At execution time, the Natural application program containing the CALLNAT statement and the stub subprogram
must exist on the client side. The Natural application subprogram must exist on the server side. Both the stub and
server subprograms must have the same name.

For information on the SYSRPC Stub Generation function, see the relevant section in the SYSRPC Utility
documentation.

Working with Automatic Natural RPC Execution

You are not required to generate Natural RPC stubs, but you can work with automatic Natural RPC execution (i.e.
without using Natural stubs). To work with automatic Natural RPC execution set the RPC parameter AUTORPC as
follows:

AUTORPC=ON

In that case, you can omit the generation of the client stub during your preparations for RPC usage. When the
automatic Natural RPC execution is ON, Natural behaves as follows:

if a subprogram cannot be found locally, Natural tries to execute it remotely (a stub subprogram is not needed),
the parameter data area will then be generated dynamically during runtime.

As stubs only exist for client programs, this feature has no effect on the CALLNAT program on the server.

If AUTORPC is set to ON, and a Natural stub exists, it will still be used.

Modifying RPC Profile Parameters Dynamically
With the Parameter Maintenance function, for the current session, you can dynamically modify some of the RPC
profile parameters set in the Natural profile parameter module.

Attention:
These modifications are retained as long as the user session is active; they are lost when the session is terminated.
Static settings are only made using Natural profile parameters.

For information on the SYSRPC Parameter Maintenance function, see the relevant section in the SYSRPC Utility
documentation.

Executing Server Commands
Active servers that have been defined in the service directory (see Specifying RPC Server Addresses) can be
controlled with the SYSRPC server command execution functions under Natural RPC 5.1 or under the current
version of Natural RPC, as described in the relevant section in the SYSRPC Utility documentation.

Logon to a Server Library
The server library on which the callnat is executed depends on the RPC LOGON option on the client side and a
couple of parameters on the server side.

5Copyright Software AG 2002

Modifying RPC Profile Parameters DynamicallyOperating a Natural RPC Environment

The following table shows which the relevant parameters are and how they influence the library setting:

 Client Server

 1 2 3 4 5 6 7

 *library-id RPC
LOGON
flag for

server entry
set?

LOGONRQ
set?

Server
started with
STACK=

NSC
or

native
Natural?

NSC:
RPC LOGON

option in
library
profile

Server
*library-id

1 Lib1 no no logon lib1 No influence N/-- Lib1

2 Lib1 no no logon lib2 No influence N/-- Lib2

3 Lib1 no yes (Client LOGON flag = no) and (LOGONRQ = yes)
is not possible.

4 Lib1 yes No influence No influence NSC AUTO Lib1

5 Lib1 yes No influence No influence NSC N Lib1

6 Lib1 yes No influence No influence Native Natural -- Lib1

Explanation of the table columns:

1. The library ID of the client application where the callnat is initiated.
2. The value of the RPC LOGON flag. Can be set for a whole node or a server. The flag can be set in the Service

Directory of SYSRPC or using the DFS parameter or using the interface USR2009P.
3. LOGONRQ can be set as a Natural profile parameter at server startup.
4. The library ID to which the server is positioned at its startup.
5. Does the server run under Natural Security (NSC) or not?
6. The setting of the LOGON option in the NSC library profile (Session options > RPC restrictions) of the NSC

server application. If the NSC LOGON option is set to AUTO, only library and user ID are taken. If set to N
(default), the library, user ID and password parameters are evaluated.

7. The library on the server where the CALLNAT program is finally executed.

Using the LOGON Option
The LOGON option defines on which library the remote subprogram is to be executed. See also Logon to a Server
Library.

When you do not use the LOGON option, the CALLNAT is executed on the library to which the server is currently
logged on. This server logon is defined with the Natural profile parameter STACK = (LOGON library). The server
will search for the CALLNATs to be executed in library (and all associated steplibs defined for library).

A client application can be enabled to execute a subprogram on a different library by setting the LOGON option for
this subprogram. This causes the client to pass the name of its current library to the server, together with this
LOGON option. The server will then logon to this library, searching it for the desired subprogram and, if the latter is
found, it will execute it. After that, it will make a logoff to the previous library.

Settings Required on the Client Side

To set the LOGON option, you can use either the SYSRPC Service Directory maintenance function under Natural
RPC 5.1 or under the current version of Natural RPC (see the SYSRPC Utility documentation) or - when using a
default server - the DFS profile parameter or the Interface USR2007N.

Copyright Software AG 20026

Operating a Natural RPC EnvironmentUsing the LOGON Option

Settings Required on the Server Side

No setting is required on the server side.

Using Natural RPC with Natural Security
Natural RPC also supports Natural Security in client/server environments, where security may be active on either (or
both) sides. If security data is to be passed to the server, the LOGON option (see also Using the LOGON Option)
must be used.

The user ID and password are established as follows:

If the client runs under Natural Security, the user ID and password from the Natural Security logon on the client
are used and passed to the server.
For non-Natural Security clients, the interface USR1071 is provided which the user has to execute and which
prompts the user to specify his logon data - which are then passed to the server. The interface USR1071 is
contained in the library SYSEXT. The logon data contains the user ID and password from which the so-called
security token is generated, and additionally some administrative information. For a more detailed description,
see the USR1071T member in library SYSEXT. A typical interface call would read:
USR1071P userid password ’0’ ’0’ ’0’ ’0’ ’Y’ ’Y’ .

If the server runs under Natural Security, the user ID and password from the client are verified against the
corresponding user security profile on the server, and the logon to the requested library and the execution of the
subprogram are performed according to the corresponding Natural Security library and user profile definitions on the
server.

After the execution of the subprogram, the library used before the CALLNAT request is made current again on the
server. In the case of a conversational RPC, the first CALLNAT request within the conversation sets the library ID
on the server; and the CLOSE CONVERSATION statement resets the library ID on the server to the one before the
conversation was opened.

To enforce the LOGON option - that is, if you want a server to accept only requests from clients where the LOGON
option is set - set the profile parameter/subparameter LOGONRQ to ON for the server.

As part of the Natural RPC Restrictions in library profiles of Natural Security, a session option "Close all databases"
is provided. It causes all databases which have been opened by remote subprograms contained in the library to be
closed when a Natural logon/logoff to/from the libraries is performed. This means that each client uses its own
database session. See Natural RPC Restrictions in the Natural Security documentation.

Using Natural RPC with EntireX Security
Natural RPC fully supports EntireX Security on the client side and the server side.

Client Side

To logon to and logoff from the EntireX Broker, the interface USR2071N is provided in library SYSEXT. To logon
to EntireX Broker, you use the logon function of USR2071N and pass your user ID and password to the selected
EntireX Broker. After a successful logon, the security token returned is saved by Natural and passed to the EntireX
Broker on each subsequent call. The logon feature is fully transparent to the Natural application.

If EntireX Security has been installed or if AUTOLOGON=NO has been specified in the EntireX Broker attribute
file, you must invoke USR2071N with the logon function before the very first remote CALLNAT execution.

7Copyright Software AG 2002

Using Natural RPC with Natural SecurityOperating a Natural RPC Environment

You are recommended to invoke USR2071N with the logoff function as soon as you no longer intend to use a remote
CALLNAT.

Using the Interface USR2071N

USR2071N has the following parameters:

Parameter I/O Format Description

function I A08 Function code.

Values:

LOGON Logon to EntireX Broker

LOGOFF Logoff from EntireX Broker

broker-id I A08 Broker ID
With Natural RPC Version 5.1, the broker-id may have up to 32 characters for physical
node names and up to 192 characters for logical node names or logical service names.
See Using EntireX Location Transparency.

user-id I A08 User ID.

password I A08 User ID’s password.

newpassw I A08 User ID’s new password.

rc O N04 Return value:

0 ok

1 invalid function code

9999 EntireX Broker error (see message)

message O A80 Message text, returned by EntireX Broker.

The Subprogram USR2071N should be copied to the Library SYSTEM or to the steplib library, or to any
application.

The parameters listed above must be defined via DEFINE DATA.

The calling program must contain the following statement:

CALLNAT ’USR2071N’ FUNCTION BROKER-ID USER-ID PASSWORD NEWPASSW RC MESSAGE

Special considerations when using location transparency:

If you want to LOGON using a logical node name, you have to use the LOGBROK keyword.

BROKER-ID := ‡LOGBROK= my_logical_node,my_set Ÿ

If you want to LOGON using a logical service name, you have to use the LOGSERVICE keyword.

BROKER-ID := ‡LOGSERVICE= my_logical_service,my_set Ÿ

Copyright Software AG 20028

Operating a Natural RPC EnvironmentClient Side

Functionality

LOGON

An EntireX Broker LOGON function is executed to the named broker-id with the user-id and the password passed.
After a successful LOGON call, the client can communicate with the EntireX Broker broker-id as usual.

With newpassw the client user can change her/his password via the EntireX Security features.

Notes:

If a successful LOGON has been performed, the user ID used in this LOGON will be passed to the named
EntireX Broker on all subsequent remote procedure CALLNATs which are routed via this EntireX Broker.
Without an explicit LOGON, the current contents of *USER is used. The same applies if you have issued a
LOGON to EntireX Broker 1, but your remote procedure CALLNAT is routed via EntireX Broker 2.
Only the last LOGON is internally maintained and can be used to access the named EntireX Broker. With
Natural RPC Version 5.1, this restriction is dropped and it is possible to LOGON to multiple EntireX Brokers.
Before a new LOGON is executed, a LOGOFF is done with the data of the last successful LOGON.
An internal reLOGON is done after an EntireX Broker timeout has occurred, if the original LOGON was done
without a password (the password used in the LOGON is not saved). If no internal reLOGON is possible after a
timeout has occurred, the client has to explicitly reissue the LOGON.

LOGOFF

An EntireX Broker LOGOFF function is executed to the broker-id named for the user-id passed.

Server Side

If the value of ACIVERS is 2 or higher, the server will log on to the EntireX Broker at the session start using the
LOGON function. The user ID is the same as the user ID defined by SRVUSER.

If EntireX Security has been installed and if the EntireX trusted user ID feature is not available, there are two
alternative ways to specify the required password:

SRVUSER=*NSC

If Natural Security is installed on the server, you can specify SRVUSER=*NSC to determine that the current
Natural Security userID which was used when the server was started is used for the LOGON in conjunction
with the accompanying Natural Security password. In this case, the value set for ACIVERS must be at least 4.

USR2072N

Interface USR2072N enables you to specify a password which is used for the LOGON in conjunction with
SRVUSER.

Using the Interface USR2072N

USR2072N has the following parameter:

Parameter I/O Format Description

password I A08 User ID’s password.

The Subprogram USR2071N should be copied to the library SYSTEM or to the steplib library, or to any application.

9Copyright Software AG 2002

Server SideOperating a Natural RPC Environment

The parameter listed above must be defined using the DEFINE DATA statement.

The calling program must contain the following statement:

CALLNAT ’USR2072N’ PASSWORD

The calling program must be executed before the Natural RPC server has started its initialization. To accomplish
this, put the name of the calling program on the Natural stack when starting the server:

STACK=(LOGON "server library";USR2072P "server password")

Using Compression
Compression types may be: 0, 1 or 2. Stubs generated with COMPR = 1 or 2 can help reduce the data transfer rate.

Compression
Type

Description

COMPR=0 All CALLNAT parameter values are sent to and returned from the server,
i.e. no compression is performed.

COMPR=1
(default)

M-type parameters are sent to and returned from the server, whereas O-type parameters
are only transferred in the send buffer. A-type parameters are only included in the reply buffer.
The reply buffer does not contain the Format description.

COMPR=2 Same as for COMPR = 1, except that the server reply message still contains the format description
of the CALLNAT parameters. This might be useful if you want to use certain options for data
conversion in the Software AG product EntireX Broker (for more information, see the description
of Translation Services in the EntireX Broker documentation).

Using Secure Socket Layer
With Natural RPC Version 5.1, Secure Socket Layer (SSL) support for the TCP/IP communication to the EntireX
Broker has been introduced.

To enable the EntireX Broker to recognize that the TCP/IP communication should use SSL, you must use one of the
following methods:

Append the string :SSL to the node name. If the node name has already been postfixed by the string :TCP, :TCP
must be replaced by :SSL.
Prefix the node name with the string //SSL:

Example:
SRVNODE=Ÿ157.189.160.95:1971:SSLŸ

Before you access an EntireX Broker using SSL, you must first invoke USR2035N to set the required SSL parameter
string

Using Interface USR2035N

USR2035N has the following parameters:

Copyright Software AG 200210

Operating a Natural RPC EnvironmentUsing Compression

Parameter I/O Format Description

function I A01 Function code.

Values:

P Put: Sprcify a new SSL parameter string.

G Get: Retrieve previously specified SSL parameter string.

SSLPARMS I A128 SSL parameter string as required by the EntireX Broker

The Subprogram USR2035N should be copied to the library SYSTEM or to the steplib library, or to any application.

The parameters listed above must be defined via DEFINE DATA.

The calling program must contain the following statement:

CALLNAT ’USR2035N’ FUNCTION SSLPARMS

Functionality of Interface USR2035N

P (specify a new SSL parameter string)

The SSL parameter string is internally saved and passed to EntireX each time an EntireX Broker using SSL
communication is referenced the first time. You may use different SSL parameter strings for several EntireX Broker
connections by calling USR2035N each time before you access the EntireX Broker the first time.

Example:

FUNCTION := ‡PŸ
SSLPARMS := ‡TRUST_STORE=FILE://DDN:CACERT&VERIFY_SERVER=NŸ
CALLNAT ‡USR2035NŸ USING FUNCTION SSLPARMS

To set SSL parameters in case of an Natural RPC server, put the name of the calling program onto the Natural stack
when starting the server.

Example:

STACK=(LOGON server-library;USR2035N ‡PŸ ‡TRUST_STORE=FILE://DDN:CACERT&VERIFY_SERVER=NŸ)

G (retrieve previously specified SSL parameter string)

The previously put SSL parameter string is returned to the caller.

For more information about the SSL parameter string, refer to the EntireX documentation.

Monitoring the Status of an RPC Session
This part is organized in the following sections:

Using the RPCERR Program
Using the RPCINFO Subprogram
Using the Server Trace Facility
Defining the Trace File

11Copyright Software AG 2002

Monitoring the Status of an RPC SessionOperating a Natural RPC Environment

Using the RPCERR Program

You can use the RPCERR program from the command line or invoke it via FETCH from within a Natural program.

RPCERR displays the last Natural error number and message if it was RPC related and it also displays the last
BROKER reason code and associated message. Additionally, the node and server name from the last EntireX Broker
call can be retrieved.

Example of an RPC Error Display: RPCERROR

NATURAL error number: NAT6972
 NATURAL error text :
 Directory error on Client, reason 3 :3:.

RPC error information:
 No additional information available.

Server Node: Library: SYSRPC
 Server Name: Program: NATCLT3
 Line No: 0480

Using the RPCINFO Subprogram

You can use the subprogram RPCINFO in your application program to retrieve information on the state of the
current RPC session. This also enables you to handle errors more appropriately by reacting to a specific error class.

The subprogram RPCINFO is included in the library SYSRPC.

Example:

DEFINE DATA LOCAL USING RPCINFOL
 LOCAL
 1 PARM (A1)
 1 TEXT (A80)
 1 REDEFINE TEXT
 2 CLASS (A4)
 2 REASON (A4)
 END-DEFINE
 ...
 OPEN CONVERSATION USING SUBPROGRAM ’APPLSUB1’
 CALLNAT ’APPLSUB1’ PARM
 CLOSE CONVERSATION *CONVID
 ...
 ON ERROR
 CALLNAT ’RPCINFO’ SERVER-PARMS CLIENT-PARMS
 ASSIGN TEXT=C-ERROR-TEXT
 DISPLAY CLASS REASON
 END-ERROR
 ...
 END

RPCINFO has the following parameters which are provided in the PDA RPCINFOL:

Copyright Software AG 200212

Operating a Natural RPC EnvironmentUsing the RPCERR Program

Parameter Format Description

SERVER-PARMS Contains information about the Natural session when acting as a server.
The SERVER-PARMS only apply if you execute RPCINFO remotely on an RPC
server.

S-BIKE A1 Transport protocol used. Possible values: B (EntireX Broker) or C (CSCI, OpenVMS
only).

S-NODE A8 The node name of the server.

S-NAME A8 The name of the server.

S-ERROR-TEXT A80 Contains the message text returned from the transport layer.

S-CON-ID I4 Current conversation ID. Note that this is the physical ID from EntireX Broker, not
the logical Natural ID.
This parameter always contains a value as EntireX Broker generates IDs for both
conversational and non-conversational calls.
If the physical conversation ID is either non-numeric or greater than I4, a -1 is
returned.

S-CON-OPEN L Indicates whether there is an open conversation. This parameter contains value TRUE
if a conversation is open, otherwise it contains FALSE.

CLIENT-PARMS Contain information about the Natural session when acting as a client.
The CLIENT-PARMS only apply if you execute RPCINFO remotely on an RPC
client.

C-BIKE A1 Transport protocol used. Possible values: B (EntireX Broker) or C (CSCI, OpenVMS
only).

C-NODE A8 The node name of the previously addressed server.

C-NAME A8 The name of the previously addressed server.

C-ERROR-TEXT A80 Contains the message text returned from the transport layer.

C-CON-ID I4 Conversation ID of the last server call. Note that this is the physical ID from EntireX
Broker, not the logical Natural ID.
If no conversation is open, the value of this parameter is less than or equal to 0. If the
physical conversation ID is either
non-numeric or greater than I4, a -1 is returned.

C-CON-OPEN L Indicates whether there is an open conversation. This parameter contains value TRUE
if a conversation is open, otherwise it contains FALSE.

Using the Server Trace Facility

Natural RPC includes a trace facility that enables you to monitor server activities and trace possible error situations.

Activating/Deactivating the Server Trace Facility

To activate/deactivate the server trace facility, start the server with the option

TRACE=n

The integer value "n" represents the desired trace level; that is, the level of detail in which you want your server to be
traced. The following values are possible:

13Copyright Software AG 2002

Using the Server Trace FacilityOperating a Natural RPC Environment

Value Trace Level

0 No trace is performed (default).

1 All client requests and corresponding server responses are traced and documented.

2 All client requests and corresponding server responses are traced and documented; in addition, all RPC data
are written to the trace file.

The RPC trace facility writes the trace data to the Natural Report Number 10.

Defining the Trace File
The trace file definition depends on the environment. Below is information on:

Trace File Handling for Windows

Trace File Handling for Windows

It is recommended that you use a different file name (that is, a different NATPARM parameter file) for each server
so that you can trace them individually. The trace file is defined in the NATPARM parameter file of the Natural
server (see Device/Report Assignments in the section Profile Parameters, Natural Execution Configuration in the
Natural Operations for Windows documentation):

1. Reports
Assign the logical device LPT10 to your Report Number 10.

2. Devices
Instead of selecting a physical printer specification for LPT10, specify a file name that represents the name of
your trace file. As default, old trace files are deleted when a new file with the same name is created.
If you wish to append the new log to the existing one, specify:
>>filename

Copyright Software AG 200214

Operating a Natural RPC EnvironmentDefining the Trace File

Handling Errors
Remote Error Handling
Avoiding Error Message NAT3009 from Server Program
User Exit NATRPC01

Remote Error Handling

Any Natural error on the server side is returned to the client as follows:

Natural RPC moves the appropriate error number to the *ERROR-NR system variable.
Natural reacts as if the error had occurred locally.

Note:
If AUTORPC is set to ON and a subprogram cannot be found in the local environment, Natural will interpret
this as a remote procedure call. It will then try to find this subprogram in the service directory.
If it is not found there, a NAT6972 error will be issued. As a consequence, no NAT0082 error will be issued if a
subprogram cannot be found.

See also Using the RPCERR Program.

Avoiding Error Message NAT3009 from Server Program

If a server application program does not issue a database call during a longer period of time, the next database call
might return a NAT3009 error message.

To avoid this problem, proceed as follows:

1. Add a FIND FIRST or HISTOGRAM statement in program NATRPC39, library SYSRPC.
2. Copy the updated program to library SYSTEM or to the appropriate user library.

User Exit NATRPC01

This exit is called when a Natural error has occurred, actually after the error has been handled by the Natural RPC
runtime and immediately before the response is sent back to the client. This means, the exit is called at the same
logical point as an error transaction, that is, at the end of the Natural error handling, after all ON ERROR blocks
have been processed.

In contrast to an error transaction, this exit is called with a CALLNAT statement and must therefore be a subprogram
which must return to its caller.

The interface to this exit is similar to the interface of an error transaction. In addition, the exit can pass back up to 10
lines of information which will be traced by the Natural RPC runtime. Only lines which begin with a non-blank
character will be traced.

Important Notes:

1. NATRPC01 must be located in library SYSTEM on FUSER. The STEPLIB concatenation of the library to
which the server currently is logged on is not evaluated.

2. The DEFINE DATA PARAMETER block must not be changed.

15Copyright Software AG 2002

Handling ErrorsOperating a Natural RPC Environment

	Operating a Natural RPC Environment
	Specifying RPC Server Addresses
	Using Local Directory Entries
	Using Remote Directory Entries
	Specifying a Default Server Address at Natural Startup
	Specifying a Default Server Address within a Natural Session
	Using an Alternative Server
	Using EntireX Location Transparency

	Stubs and Automatic RPC Execution
	Creating Stub Subprograms
	Working with Automatic Natural RPC Execution

	Modifying RPC Profile Parameters Dynamically
	Executing Server Commands
	Logon to a Server Library
	Using the LOGON Option
	Settings Required on the Client Side
	Settings Required on the Server Side

	Using Natural RPC with Natural Security
	Using Natural RPC with EntireX Security
	Client Side
	Using the Interface USR2071N
	Functionality
	LOGON
	LOGOFF

	Server Side
	Using the Interface USR2072N

	Using Compression
	Using Secure Socket Layer
	Using Interface USR2035N
	Functionality of Interface USR2035N

	Monitoring the Status of an RPC Session
	Using the RPCERR Program
	Using the RPCINFO Subprogram
	Using the Server Trace Facility
	Activating/Deactivating the Server Trace Facility

	Defining the Trace File
	Trace File Handling for Windows

	Handling Errors
	Remote Error Handling
	Avoiding Error Message NAT3009 from Server Program
	User Exit NATRPC01

